
Add binomial confidence intervals to mutation frequencies.
Source:R/get_binomial_conf_intervals.R
get_binom_ci.Rd
Uses the binomial distribution to create confidence intervals for mutation frequencies calculated from a single point estimate. Calculating binomial confidence intervals for mutation frequencies is not part of MutSeqR's recommended workflow, but is provided here for users who wish to use it.
Usage
get_binom_ci(
mf_data,
sum_col = "sum_min",
depth_col = "group_depth",
conf_level = 0.95,
method = "wilson"
)
Arguments
- mf_data
The data frame containing the mutation frequencies per sample. Obtained as an output from
calculate_mf
.- sum_col
Column name that specifies the mutation count (e.g., sum_min)
- depth_col
Column name that specifies the sequencing depth (e.g., total_depth)
- conf_level
Confidence interval to calculate, default 95% (0.95)
- method
The method used by binom::binom.confint to calculate intervals. Default is "wilson" (recommended).
Examples
example_file <- system.file("extdata", "Example_files",
"example_mutation_data_filtered.rds",
package = "MutSeqR")
example_data <- readRDS(example_file)
mf <- calculate_mf(example_data)
#> Performing internal depth correction to prevent double-counting...
#> Internal depth correction complete.
#> Joining with `by = join_by(sample)`
confint <- get_binom_ci(mf_data = mf,
sum_col = "sum_min",
depth_col = "group_depth")